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Abstract—In this paper, we provide a study of channel-aware de-
cision fusion (DF) over a “virtual” multiple-input multiple-output
(MIMO) channel in the large-array regime at the DF center
(DFC). The considered scenario takes into account channel esti-
mation and inhomogeneous large-scale fading between the sensors
and the DFC. The aim is the development of (widely) linear
fusion rules, as opposed to the unsuitable optimum log-likelihood
ratio (LLR). The proposed rules can effectively benefit from
performance improvement via a large array, differently from
existing suboptimal alternatives. Performance evaluation, along
with theoretical achievable performance and complexity analysis,
is presented. Simulation results are provided to confirm the find-
ings. Analogies and differences with uplink communication in a
multiuser (massive) MIMO scenario are underlined.

Index Terms—Decision fusion, distributed detection, large-scale
MIMO, wireless sensor networks.

I. INTRODUCTION

A. Motivation

D ECISION FUSION (DF) in a wireless sensor network
(WSN) consists in transmitting local decisions about an

observed phenomenon from sensors to a DF center (DFC) for a
global decision, with the intent of surveillance and/or situation
awareness purposes [2]. Typically all the studies had been fo-
cused on a parallel access channels (PACs) with instantaneous
or statistical channel-state information (CSI), although some re-
cent works extended to the case of multiple access channels
(MACs).
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Recently, DF over MACs is becoming increasingly attrac-
tive, since it exploits both the interfering nature of the broad-
cast wireless medium (for spectral-efficiency purposes) and the
correlated nature of decisions, all regarding the same unknown
event being observed. Also, deep fading scenarios are typically
overcome with the use of multiple antennas at the DFC, thus
determining a “virtual” multiple-input multiple-output (MIMO)
channel. The latter architectural choice only demands further
complexity at the DFC side and does not affect simplicity of
sensors implementation. Indeed, the main difficulty consists in
the design of efficient (in terms of complexity and performance)
fusion rules at the DFC, since complexity of the optimal fu-
sion rule explodes because of the interference created by the
simultaneous transmission of each sensor decision. We remark
that the mentioned complexity increase is only due to the MAC
choice and does not depend significantly on the number of DFC
antennas.
Massive MIMO is an emerging technology for communi-

cation applications where antenna arrays with a few hundred
elements are placed at base stations, serving many tens of
terminals simultaneously [3], [4]. Its potential benefits consist
in: (i) significant increase of the capacity and the radiated
energy efficiency, (ii) reduced latency through deep-fading
mitigation, (iii) simplification of the multiple-access layer and
(iv) increased robustness to unintended man-made interference
and to intentional jamming [4]. From a mathematical point of
view, there are three main advantages in using a large antenna
array. Firstly, the effect of small-scale fading is averaged out.
Secondly, the random channel vectors between the users and
the base station become pairwise orthogonal as the array size
grows. Finally, massive MIMO systems allow for reduction of
transmitted energy/power.
In our opinion, the advantages offered by massive MIMO

may be beneficial in the context of WSNs, especially for DF
over MACs. The DFC may be equipped with a large antenna
array, thus giving rise to a “virtual” massive MIMO, similarly
to the uplink of a multiuser MIMO communication. The pro-
posed architecture, other than enjoying increased spectral effi-
ciency, will mitigate severe energy constraints given by inex-
pensive sensor nodes (thus providing extended battery life) and
facilitate low-complexity (but near-optimal) fusion rules design
at the DFC. It is worth remarking that the proposed study relies
on the assumption that the number of antennas at the DFC is
much larger than the number of transmitting sensors. The latter
setup may be represented, analogously as for uplink communi-
cations, by a WSNs with many sensors reporting their decision
to a DFC equipped with muchmore antennas. Alternatively, this
may be also verified in the case of massively deployed sensor
nodes, through the use of appropriate sensor subset selection
approaches [5].
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B. Related Literature on Decision Fusion

Negative characteristics of the optimal fusion rule, i.e., the
log-likelihood ratio (LLR) test, such as numerical instability and
strong requirements on system knowledge, motivated the anal-
ysis of sub-optimal alternatives such as maximum ratio com-
bining (MRC), equal gain combining and Chair-Varshney max-
imum likelihood over PACs [2], [6]. Max-Log rule has been
studied in [7] and shown to outperform other sub-optimal rules
though exhibiting higher requirements on system knowledge.
Distributed detection over MACs was first studied in

[8], where perfect compensation of the fading coefficients
is assumed for each sensor. Non-coherent modulation and
censoring over PACs and MACs were analyzed in [9] with
emphasis on processing gain and combining loss. The same
scenario was studied in [10], focusing on the error exponents
(obtained through the large deviation principle) and the de-
sign of energy-efficient modulations for Rayleigh and Rice
fading. Optimality of received-energy statistic in Rayleigh
fading scenario was demonstrated for diversity MACs with
non-identical sensors in [11]. Efficient DF over MACs only
with knowledge of the instantaneous channel gains and with
the help of power-control and phase-shifting techniques was
studied in [12]. Techniques borrowed from direct-sequence
spread-spectrum systems were combined with on-off keying
(OOK) modulation and censoring for DF in scenarios with
statistical CSI [13].
DF over a (virtual) MIMO was first studied in [14], with

focus on power-allocation design based on instantaneous CSI,
under the framework of J-divergence. Distributed detection with
ultra-wideband sensors over MAC was then studied in [15].
The same model was adopted to study data fusion over MIMO
channels with amplify-and-forward sensors in [16], [17]. A re-
cent theoretical study on data fusion with amplify and forward
sensors and a large-array at the DFC is presented in [18]. De-
sign of several sub-optimal fusion rules for the MIMO sce-
nario was proposed in [19] and a theoretical study on MRC
was presented in [20]. Various sub-optimal fusion rules (with re-
duced system knowledge) for channel-aware DF in the MIMO
scenario with instantaneous CSI have been proposed in [19],
where “decode-and-fuse” and “decode-then-fuse” approaches
are compared through simulation results in the case of few an-
tennas at the DFC. It is worth noticing that in MIMO-DF sce-
nario the LLR is not a viable solution, since it suffers from the
exponential growth of the computational complexity with re-
spect to (w.r.t.) the number of sensors and a strong requirement
on system knowledge.

C. Related Literature on Massive MIMO

The pioneering work of Marzetta [21] showed that the use of
unlimited number of antennas at the base station provides novel
interesting phenomena in the context of cellular systems: the
detrimental effects of uncorrelated noise and fast fading vanish,
the throughput is independent of the size of the cells, the spectral
efficiency is independent of the bandwidth, the required trans-
mitted energy per bit decreases, and the simplest sort of pre-
coders and detectors are permitted. Additionally, a novel phe-

nomenon due to inter-cell interference (namely pilot contami-
nation) emerges, and many works have focused on such an issue
[22].
In the context of very large size MIMO systems, unified per-

formance analysis for both uplink and downlink of non-coop-
erative multi-cell systems with linear precoders and detectors is
proposed in [23], where the loss of realistic systems due to finite
number of antennas w.r.t. asymptotic theoretical performance
is evaluated. Performance of linear detectors for the uplink in
presence of imperfect CSI is analyzed in [24] focusing on the
tradeoff between energy and spectral efficiency, while analytic
results for the data rate, symbol error rate and outage proba-
bility (in the case of perfect CSI and zero-forcing (ZF) receiver)
are derived both for single- and multi-cell systems [25], [26]. A
dual analysis for the downlink in the case of conjugate and ZF
beamformers is given in [27].

D. Main Results and Paper Organization

The main contributions of this manuscript are related to
channel-aware DF over MIMO with instantaneous CSI and
more specifically are:
• The large-array regime at the DFC is analyzed, to the best
of our knowledge, for the first time. The aim is the exploita-
tion of the (approximate) orthogonality of interfering sen-
sors decisions observed from a DFCwhich employs a mas-
sive array, with the intent of its processing simplification.
Differently from [19], the considered model takes also into
account path loss, shadowing and uncertainty arising from
estimated CSI;

• Sub-optimal fusion rules with reduced complexity are de-
rived, consisting of (i) linear-filters plus a soft/hard input
fusion scheme and (ii) deflection-maximizer widely-linear
(WL) rules, which are compared to existing alterna-
tives, namely the standard MRC. We underline that the
derivation of the first class of rules heavily relies on the
advantages offered by large-arrays, and exploiting specific
conditions (i.e., the favorable propagation discussed in
Section II.C) and approximations we are able to obtain a
result resembling [7] in a different context. Also, a modi-
fied “large-MIMO” version of MRC is developed, which
can truly exploit linear SNR increase with array size;

• Closed-form performance, in terms of system false-alarm
and detection probabilities, is derived when a large-array
is employed (analogously as in [24]), through the saddle-
point approximation for linear filters and exactly for WL
rules and (modified) MRC. The proposed analysis under-
lines the “energy efficiency” of the present approach: in-
deed, the transmitted energy of each sensor can be reduced
by a factor given by the number of antennas in the perfect
CSI case (resp. the square root of the number of antennas,
in the estimated CSI case) without leading to zero perfor-
mance. This holds true even in the case of (linear) sub-op-
timal fusion rules;

• A detailed complexity analysis is presented for all the pre-
sented rules, along with efficient approximations which
(possibly) avoid time-consuming matrix inversion, fol-
lowing the same lines of research as in [28], [29];
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• Extensive simulation studies are performed to compare the
considered rules and verify the theoretical findings. Also,
analogies with the uplink in multi-user massive MIMO
scenario are highlighted throughout the paper.

The manuscript is organized as follows: Section II introduces
the system model; in Section III we derive the proposed fusion
rules; Section IV presents a corresponding theoretical analysis
while Section V contains a discussion on computational com-
plexity; the results are verified in Section VI via simulations; fi-
nally, in Section VII we draw some concluding remarks; proofs
and derivations are deferred to the Appendices.

II. SYSTEM MODEL

A. WSN Model

In this section we briefly describe the system model1, illus-
trated in Fig. 1. We consider a decentralized binary hypothesis
test, where sensors are used to discriminate between the hy-
potheses of the set . For example and
may represent the absence and the presence of a specific target of
interest, respectively. The th sensor, ,
takes a binary local decision about the observed phe-
nomenon on the basis of its own measurements. Until otherwise
stated, here we do not make any conditional (given )
mutual independence assumption on . Each decision is
mapped to a symbol representing a binary
phase-shift keying (BPSK) modulation2: without loss of gener-
ality (w.l.o.g.) we assume that maps into

. The quality of the th sensor decisions is character-
ized by the conditional probabilities . More specifi-
cally, we denote and

the probability of detection and false alarm of the th
sensor, respectively.
Sensors communicate with a DFC equipped with receive

antennas over a wireless flat-fading MAC in order to exploit
diversity and combat signal attenuation due to small-scale
fading; this setup determines a distributed or “virtual” MIMO
channel [14], [19]. A large-array configuration is considered in

1Notation—Lower-case (resp. Upper-case) bold letters denote vectors (resp.
matrices), with (resp. ) being the th (resp. the th) element of
(resp. ); upper-case calligraphic letters denote finite sets, with repre-

senting the -ary Cartesian power of (resp. ) denotes the
(resp. ) null (resp. identity) matrix; (resp. ) denotes the null (resp.
ones) vector of length and de-
note expectation, variance, transpose, conjugate transpose, real part, imaginary
part and Euclidean norm operators, respectively; denotes the diagonal
matrix extracted from (resp. ) denotes the augmented vector (resp. ma-
trix) of (resp. ), that is (resp. ); and

denote probability mass functions (pmf) and probability density functions
(pdf), while and their corresponding conditional counterparts;

(resp. ) denotes the covariance (resp. the complementary covariance)
matrix of the complex-valued random vector (resp. )
denotes a proper complex (resp. real) normal distribution with mean vector
and covariance matrix , while and denote the pdf and the com-
plementary cumulative distribution function of a standard normal random vari-
able; finally the symbols and (resp. ) mean “proportional to”,
“tends to”, “tends in distribution to” and “distributed as” (resp. “approximately
distributed as”), respectively.
2In the case of an absence/presence task, where is much more probable,

OOK can be employed for energy-efficiency purposes. Hereinafter we will only
consider BPSK; the extension of the presented results to OOK will be object of
future work.

Fig. 1. DF model in presence of a (virtual) MIMO channel.

this paper, that is ; nonetheless we will emphasize the
results which still apply in the generic MIMO-DF setup. Also,
perfect synchronization3, as in [8], [11], [14], [19], is assumed
at the DFC.
We denote: the signal at the th receive antenna of the

DFC after matched filtering and sampling; the fading coef-
ficient between the th sensor and the th receive antenna of the
DFC; the additive white Gaussian noise at the th receive
antenna of the DFC. The vector model at the DFC is:

(1)

where
are the received-signal vector, the channel matrix, the trans-
mitted-signal vector and the noise vector, respectively. In (1) the
constant is used to control the energy spent from the generic
sensor during the reporting phase. The matrix models in-
dependent fast fading, geometric attenuation and log-normal
shadow fading. The generic coefficient is then expressed
as:

(2)

where the known (since it is assumed constant over many coher-
ence intervals) term models the geometric attenuation and
shadow fading4 and denotes the fast fading coefficient be-
tween the th sensor and the th receive antenna. All the coeffi-
cients are assumed independent and identically distributed
(i.i.d.) random variables, with . Based on these
assumptions we have

(3)

with denoting the matrix of fast fading coefficients
and a diagonal matrix where .

B. Channel Training and Estimation

We consider here the general case where the DFC has avail-
able estimated instantaneous CSI. We assume that a part of the
coherence interval is used for channel training. Let be
the number of symbols used as pilots and symbols are
used for DF task, where is the number of symbols within
the channel coherence interval. During the training phase, all
sensors simultaneously transmit mutually orthogonal pilot se-
quences of length . The pilot sequences are collected in a ma-
trix (with ), where controls pilot

3Multiple antennas at the DFC do not make these assumptions harder to verify
w.r.t. a single-antenna MAC.
4We assume that is constant over . This assumption is justified since the

sensor-DFC distance is typically much higher w.r.t. the inter-antenna distance.
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energy, such that . Then, the received signal matrix
model of the training phase is:

(4)

where and has i.i.d. elements
. Given the model in (4), the minimum

mean-square error (MMSE) estimator of given is [30]

(5)

where and can be expressed, after
some standard manipulations, in the alternative form

(6)

Also, we define the error matrix as . It can be
shown that is independent on (also the columns of both
and are mutually independent) and that both th columns

of the aforementioned matrices (denoted with and , re-
spectively) are proper complex-valued Gaussian vectors with
the following moments5:

(7)

(8)

(9)

We remark that as , the perfect instantaneous CSI case
is approached.
Finally, it is worth noticing that the overall energy spent by

the th sensor is given by ( denotes the th column of )

(10)

which accounts for both training and transmitting phases, while
the energy spent from the whole WSN is .

C. Favorable Propagation

From Section II.B we know that .
Also, the vectors , are mutually independent. Thus,
the so-called favorable propagation conditions hold [24]:

(11)

where is a diagonal matrix whose th element equals
(cf. (8)). Recent experimental results [3] have shown that prac-
tical large arrays approximate well the aforementioned propa-
gation assumption.

5Independence of and follows since: (i) both matrices are Gaussian
distributed (since they are linearly dependent on ); (ii) their columns are
zero-mean and (iii) .

III. FUSION RULES

A. Optimum Rule

The optimal test [31] for this problem6 is formulated as

(12)

where and denote the estimated hypothesis, the LLR
and the threshold which the LLR is compared to. The threshold
can be determined to assure a fixed system false-alarm rate

(Neyman-Pearson approach), or can be chosen to minimize the
probability of error (Bayesian approach) [31]. Exploiting the
independence7 of from , given , an explicit expression of
the LLR in (12) is obtained as

(13)

where we have replaced in (1) and defined
. Unfortunately, the optimal rule in

(13) presents several difficulties in its implementation, such as:
(i) availability of and and (ii) numerical in-
stability of the expression, due to the presence of exponential
functions with large dynamics [7], [19]. More importantly, the
exponential growth of the complexity with is prohibitive for
a practical design. Design of sub-optimal DF rules with sim-
pler implementation and (possibly) reduced system knowledge
is then extremely desirable. A first study in the latter direction
is provided in [19] where sub-optimal fusion rules in the stan-
dard MIMO-DF scenario (i.e., with only a few antennas at the
DFC) were presented and compared. Also, even though in [19]
it was shown that Max-Log rule has the closest performance to
the LLR, we discard it from the comparison, since in a WSN
with a medium to high number of sensors its exponential com-
plexity remains impractical.

B. MIMO Linear Filters Plus Fusion

Large-Array pdfs of Linear Filters: Here we show how
is well-approximated by a nice two-step architecture when
grows large. More specifically, the mentioned scheme is com-
posed of a first step (a linear filter) which recovers the soft de-
cision from each sensor and a second step involved in fusing
them and obtaining a final decision, as shown in Fig. 2 (details
will be clarified hereinafter). First, consider the model in (1) and

6In this paper we consider the optimal test conditioned on the estimated ma-
trix . However, the optimal statistic in absolute sense would be one jointly
processing , as studied in [32]. Unfortunately, the complexity for pro-
cessing such statistic is impractical, then the need for separation between the
“channel-estimation” and the “channel-aware fusion” blocks.
7Indeed the directed triple formed by hypothesis, the transmitted-signal

vector and the received-signal vector satisfies the Markov property.
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Fig. 2. Large-array architecture for conditionally independent decisions.
Max-Log based (resp. CV based) fusion refers to symbols outside (inside) the
parentheses.

the linear processing , closely related to matched filter
(MF), ZF and MMSE processing, that is:

(14)

We observe that compression given by (since we are assuming
) does not entail loss of detection power for the consid-

ered hypothesis testing, as proved by the following lemma.
Lemma 1: The vector is a sufficient statistic for the consid-

ered hypothesis testing, in the cases of MF, ZF (iff ) and
MMSE processing.

Proof: The proof is given in Appendix A.
It is also straightforward to show that is Gaussian-

distributed as shown in (15) at the bottom of the page.
Exploiting favorable propagation conditions in (11),

is approximately distributed as follows:

(16)

It is apparent from (16) that all the filters show the desirable
independence property , where

(17)

in the large-array regime. We will now consider a fusion step
which is based either on the complex-valued filter output
(i.e., ) or the estimated (BPSK) transmitted vector, i.e.,

, where:

(18)

and we have denoted . The latter is re-
ferred to as a decode-then-fuse approach [19]; obviously as
grows large, also holds.
Fusion With Conditionally Independent Decisions: Asymp-

totic large-array pdfs in (16) can be effectively exploited as
follows. Here, we assume conditionally independent deci-
sions, i.e., ; this assumption
is frequently used in DF and is used either as a simplifying
assumption or a requirement to be satisfied by placing ap-
propriate requirements on the WSN [33]. Then, we adopt the
Max-Log approximation [34] which leads to the simple rule

, where is obtained with the following
linear structure with saturation:

(19)

where

and . Furthermore,
is easily obtained from as follows:

(20)

The derivation is reported in Appendix B.
On the other hand, when only the quantized vector output

is available, we exploit the Chair-Varshney rule [6] (i.e., the

LLR , obtained by exploiting large array pdfs

in (16) and assuming ), in order
to obtain the fusion statistic , where

(21)

with
and . Also this derivation is confined to
Appendix B. We remark that (21) differs from CV-based rules
used in [19] through the addition of correction termswhich takes
into account the non-ideality of the equivalent communication
channel. This is the reason for the loss w.r.t. the Max-Log is less
than expected, as shown in Section VI. In Fig. 2 we illustrate a
schematic structure of both proposed fusion rules.
Extension to Dependent Decisions: Here we discuss how the

presented approach based on linear MIMO filters can be ex-
tended to the case . Starting from

(15)
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the results in (16) and (17), as grows, we have
. Thus the approximation

(22)

holds for conditionally dependent decisions. Equation (22) rep-
resents a DFmodel where conditionally dependent decisions are
sent over PAC. However, although each sensor decision is “re-
covered” at the DFC, growth of complexity is still exponential
with .
Therefore, several approaches have been proposed in the

literature in order to deal with exponential complexity arising
from a non-factorizable , such as: (i) neglecting (only
at design stage) the conditional dependence of decisions8,
i.e., (and thus exploiting the
results obtained in the conditionally independent scenario)
or (ii) (partially) exploiting the conditional dependence via
efficient models, such as in [36] via Copula theory. This topic
falls outside the scope of this paper and we refer the interested
reader to the survey (and references therein) [37].

C. Widely-Linear (WL) Rules

A second approach consists in adopting aWL statistic (which
is then compared to , as for in (12)), that is
. The WL approach is motivated by reduced complexity and

being an improper9 complex-valued random vector,
that is .

Additionally, several optimization metrics may be considered
for obtaining . The best choice (in a Neyman-Pearson sense)
would be searching for the WL rule maximizing the global de-
tection probability subject to a global false-alarm rate constraint,
as proposed in [38] for a distributed detection problem. Unfor-
tunately, the optimized presents the following drawbacks: (i)
it is not in closed-form, (ii) it requires a non-trivial optimization
and (iii) it depends on the prescribed false-alarm constraint. Ad-
ditionally, the problem under investigation is not a multivariate
Gauss-Gauss test (i.e., ) but a test be-
tween mixtures of complex GMs (cf. (13)). This would further
complicate the optimization problem tackled in [38].
Differently, in this paper we choose as the maximizer of the

so-called deflection measure [39], [40], that is:

(23)

where

and correspond to the normal [39] and modi-
fied [40] deflections, respectively. Hereinafter we will denote

the WL statistic maximizing . The ex-
plicit expression for is given in the following proposition.

8We recall that the approximation is the
Kullback-Leibler minimizer between the joint pdf and a desirable
factorizable model [35].
9The proof is given as supplementary material of this manuscript.

Proposition 1: The vector , being the optimal solution
of the optimization problem in (23), is given by:

(24)

where:

(25)

(26)

Proof: The proof is given as supplementary material.
Maximization of deflection measures is widely used in the

design of (widely) linear rules for DF, since is always
in closed-form and also literature has shown acceptable perfor-
mance loss w.r.t. the LLR in analogous DF setups [40], [41].
Additionally, WL rules take into account the general case of
conditionally dependent decisions, while requiring only the first
and second order moments of .
Finally, it is worth remarking that deflection-optimization is

optimal only for a mean-shifted Gauss-Gauss hypothesis testing
(i.e., ) [31], where normal and modi-
fied deflections coincide and they both represent the SNR of the
statistic under Neyman-Pearson framework (remarkably in the
latter case the LLR is a linear function of measurements). There-
fore, we cannot claim any (asymptotic) optimality property for
the proposed WL rules.

D. (Modified) MRC

The LLR in (13) can be simplified under the assumption of
perfect sensors [7], [13], [19], [20], i.e.,

. In this case and (13)
reduces to [19]:

(27)

where and terms independent from have been
incorporated in as in (12). It is worth noticing that the MRC
is a sub-optimal rule since, in the practice, the sensor local deci-
sions are far from being perfect. However, it has been proved in
[19] that MRC is the low-SNR approximation of the optimum
test in (13) when local performances of sensors are identical and

. Also, it is interesting to note that the MRC in the
case of estimated CSI is simply obtained by replacing in the
MRC formula with perfect CSI [20] with its estimate , i.e.,
knowledge of error statistics is not needed.
Additionally, in order to exploit the linear SNR increase with
, which would inevitably make the fusion process mainly de-

pendent on the “sensing” errors (and consequently MRC rule
becomes clearly inappropriate, since its design is unaware of
sensing errors), we devise an alternative form of MRC, denoted
as modified MRC (mMRC), which is given by:

(28)
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where . It can be observed that mMRC
applies a sort of “static” zero-forcing (via ) in order to re-
move rule dependence on large-scale fading coefficients (which
becomes detrimental as the SNR grows). Also, it can be shown
that (28) asymptotically approaches (as grows large) the per-
formance of the counting rule, which has been shown to be ro-
bust even with heterogeneous sensors [42]. In fact, exploiting
(11) as grows, we have:

(29)

where . We will show in
Section VI that mMRC significantly outperforms MRC in
the large-array regime, since it enjoys the same asymptotic
form as the standard MRC in the scenario (cf.
[20]).
Remarks on Terminology: It is worth noticing that the ter-

minology in this paper slightly differs from that used in mas-
sive MIMO literature. In fact, we refer to MRC as the sub-op-
timal (fusion) rule which assumes and thus
resembles a MIMO-MRC combiner [43]. Differently, the term
matched filter (MF) is here used to denote the classical linear
filter operating on studied in Section III.B. Thus, in view of
the mentioned reasons, the terms will refer to different fusion
rules and are not to be seen as synonymous.

IV. LARGE-ARRAY PERFORMANCE ANALYSIS

A. Performance Measures

In this manuscript we compare the performance of the pro-
posed rules both in terms of instantaneous channel (IC) system
false alarm and detection probabilities, defined as

(30)

(31)

and the corresponding channel-averaged (CA) counterparts

(32)

(33)

where is the generic statistic employed at the DFC.
Hereinafter we will analyze the asymptotic performance (i.e.,

under the limit ) and we will show that the IC and CA
system probabilities approach the same value in the two cases
being considered. The two scenarios analyzed in this paper are
the same as in [21] and consist of: either taking the limit

and considering an energy cut in both training and
reporting phases as and or taking the
limit and considering an energy cut only in the re-
porting phase as . Scenario refers to a setup with a
fast-fading channel, where the energy spent in the training phase
is not negligible, while scenario refers to a case where the
energy used for training is negligible and thus transmit energy
can be scaled down aggressively [21].
Finally, we remark that both scenarios are of clear signifi-

cance for WSN applications, since the results presented here-
inafter are achieved in a regime where each sensor keeps re-

ducing the energy spent as the number of antennas at the DFC
grows. Therefore each sensor behaves “efficiently” (in terms of
consumed energy) and consequently prolongs its expected bat-
tery life.

B. Large MIMO Linear Filters (Cond. Indep. Decisions)

Here we derive asymptotic performance of MIMO linear fil-
ters in the case of conditionally independent decisions; the sce-
nario with conditionally dependent decisions is more cumber-
some and will be tackled elsewhere. First, it can be readily
shown that MF/ZF/MMSE performance coincide in both sce-
narios. Also, this clearly holds when either Max-Log or CV is
used in the fusion step. Indeed, asymptotically (20) and (18)
yield

(34)

where in scenario , while in scenario

holds.
Also, it is apparent that false-alarm and system detec-

tion probabilities and
in scenarios and

have not a tractable form. Hence, we pass through the evalua-
tion of corresponding cumulant generating functions (CGFs),
denoted here as , which have an easier form. In fact,
as the equivalent channel for DF model is a PAC
and thus is simply given by the sum of the individual
contributions related to each sensor. Finally, and

can be obtained (approximately) starting from the
corresponding CGFs with the use of the saddlepoint-approach
[44].
W.l.o.g. we derive hereinafter the CGF with reference

to a generic (performance in scenarios and
are obtained by using corresponding expressions reported
after (34)); also, for simplicity we will use the notation

. First, we express the CGF as:

(35)

where is the moment generating function (MGF) of
the corresponding contribution (that is, or ). In the case
of CV-based fusion this MGF is:

(36)

On the other hand, in the case of Max-Log the MGF is more
complicated:

(37)

where and is given as

(38)
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Also, in (38) we have denoted

and ,
respectively.
Once the CGFs are obtained, the prob-

abilities and can be approximated respec-
tively as [44]:

(39)

(40)

where we have denoted

(41)

(42)

and is the unique solution of the so-called saddlepoint
equation10, that is .
For example, approximation is obtained through

the following steps: (i) for a given is solved
w.r.t. and the solution is obtained; (ii) the terms
and in (41)–(42) are evaluated at ; (iii)
and are substituted in (39) for final evaluation.

C. WL Rules

Here, we first derive the exact IC system probabili-
ties for WL rules and then we consider the two asymp-
totic scenarios described in Section IV.A. Since
arises from WL processing of , we have

, where:

(43)

(44)

It is apparent from (44) that does not depend
on . Thus, w.l.o.g. we can define and evaluate
the performance11 in terms of . Based on (43) and (44),

is distributed as follows:

(45)

where

(46)

Equation (45) denotes a mixture of one-dimensional
real-valued Gaussians, all depending on (which is random)

10Explicit expressions of first/second derivative of , for both CV
and Max-Log based rules, are given as supplementary material.
11Indeed is statistically equivalent to , since a positive scaling

factor (independent on ) does not alter rule performance.

through their mean. A direct application of (45) and (31) leads
to the following exact expression for of
(identical steps apply for evaluation of ):

(47)

Such expression can now be evaluated in the asymptotic sce-
narios and described in Section IV.A. This is accom-
plished by simply taking the limit of
under the assumptions determining scenarios and , re-
spectively. The reason is the dependence of on is
only through the means of the mixture components. Hence, for
scenario we obtain

(48)

where and

. On the other hand, in the asymptotic scenario

converges to:

(49)

where and .
Derivation of both (48) and (49) is given as supplementary ma-
terial. Based on the above results it is apparent that, in both con-
sidered scenarios, (47) becomes a real-valued Gaussian mixture
with components that can be evaluated offline.
Finally, we remark that the latter equations are greatly sim-

plified in the case of conditionally uncorrelated decisions12,
. In fact

(50)

in scenario , while scenario yields:

(51)

where we have denoted
and

, respectively.

D. (Modified) MRC

The IC system probabilities for MRC can be obtained
in closed form as follows. The derivation is analogous to
the expression obtained in the simpler case and

12Even though, from a theoretical point of view, conditionally uncorrelated
decisions is a weaker assumption than conditional independence, it should be
understood that in many relevant cases in DF both properties are to be consid-
ered as synonymous.
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TABLE I
COMPUTATIONAL COMPLEXITY OF THE CONSIDERED RULES: IS THE NUMBER OF ANTENNAS AT THE DFC; IS THE NUMBER OF SENSORS;

IS THE LENGTH OF PILOT SEQUENCES EMPLOYED FOR CHANNEL ESTIMATION

(i.e., no shadowing/path loss and perfect CSI) con-
tained in [20] and it is not reported for the sake of brevity.
We start by recalling that (cf.
(13)). From inspection of (27), we observe that arises
from WL processing of . As an immediate consequence,

, where:

(52)

(53)

It is worth noticing that does not depend on
. Thus, w.l.o.g. we can define and eval-
uate the performance in terms of . It is readily shown that

is distributed as

(54)

where . Equation (54) de-

notes a mixture of one-dimensional real-valued Gaussians,
all depending on (which is random) through their mean. A di-
rect application of (54) and (31) leads to the following exact ex-
pression for of (identical steps apply for eval-
uation of ):

(55)

The expression in (55) can now be evaluated in the large-array
regime for asymptotic scenarios and , described in
Section IV.A. This is accomplished by simply taking the limit

of under the assumptions deter-
mining scenarios and , respectively. The reason is the
dependence of on is only through the means of
the mixture components. Thus, considering scenario gives:

(56)

Differently, in the case of scenario we obtain:

(57)

Derivation of both (56) and (57) is given as supplementary ma-
terial. Based on the above results it is worth remarking that,
in the asymptotic scenarios considered, (55) is a real-valued
Gaussian mixture with components that can be evaluated
offline.
By similar reasoning, we get the performance of mMRC in

the asymptotic scenarios and . Indeed, it can be shown
that, after defining , asymptotic scenario

gives

(58)

while scenario yields

(59)

V. COMPLEXITY ANALYSIS AND COMPUTATIONALLY
EFFICIENT APPROXIMATIONS

In Table I we compare the computational complexity13 of
the proposed rules, by separating the contribution related to
and the computations required whenever each new is trans-
mitted (but differently does not change). It is worth noticing
that Table I takes into account also the complexity needed for
channel training (i.e., obtaining ), which is (we re-
mark that , cf. Section II.B).
It is apparent that the optimum rule (i.e., the LLR) is unfea-

sible, especially when is very large. Differently, all the pro-
posed rules have polynomial complexity w.r.t. both and ,
becoming linear when slowly fading scenarios are considered
(i.e., when the left column of complexity contribution can be
considered as a “static step”).
The computational complexities of MF, ZF and MMSE with

Max-Log (resp. CV) based rules are mainly given by the com-
putation of (resp. ), since the complexity of the fusion step

is negligible, thus leading to analogous expressions as
in the case of classic MIMO detection [3]. On the other hand, we

13Here indicates the Landau notation, i.e., the order of complexity.



CIUONZO et al.: MASSIVE MIMO CHANNEL-AWARE DECISION FUSION 613

remark that the complexity of has been evaluated by ex-
ploiting an alternative expression of (24), which uses theWood-
bury formula [45] applied to . In fact, can be

recast equivalently as

(60)

where and we observe that

holds. Unfortunately, although the com-
plexity of ZF, MMSE and WL rules is substantially reduced
w.r.t. the optimum rule, the term can become quite dom-
inant in a WSN of large size. Such a term arises from the inver-
sion of for ZF/MMSE (cf. (14)) and for WL rules. Aiming
at mitigating the aforementioned issue, we adopt the matrix ap-
proximation proposed in [28], [29]. More specifically, we ex-
ploit the Neumann series [45] with the intent of expressing the
inverse of the generic matrix as

(61)

where (61) holds only if satisfies
( is referred to as a “similar” matrix). Trun-

cating the series up to the second term leads to:

(62)

Equation (62) requires only operations as opposed to
for the exact inversion. Hence, we use (62) by replacing

matrix with (resp. ) for computing
(resp. ) approximately. Such choices are justified since it
can be easily verified that both and satisfy the required
limit condition. In fact, as grows, they both become diag-
onally dominant, i.e., (resp.

). Performance loss arising from approximate
inversion in ZF/MMSE and WL rules is assessed in Section VI
via simulations.
Finally, the computational complexity of MRC (resp.

mMRC) is simply given by the computation of (resp.
) whenever a new is acquired and a scalar

product (cf. (27)) whenever each is observed.

VI. NUMERICAL RESULTS

Simulation Parameters: We assume is generated analo-
gously as in [24]. More specifically, we consider sensors de-
ployed in a circular area around the DFC with radius

m. Sensors are located uniformly at random and we as-
sume that no sensor is closer to the DFC than m. The
large-scale fading is modelled via , where is
a log-normal random variable, i.e.,

Fig. 3. vs. (dB) for the massive MIMO linear rules, ;
comparison of CV and Max-Log based fusion; WSN with sensors,

(dB).

where and are the mean and standard deviation in dB,
respectively. Also, is the distance between the th sensor
and the DFC and denotes the path-loss exponent. For our
simulations, we choose . Hereinafter we assume esti-
mated CSI and we set , corresponding to the minimum
training-sequence length required for a meaningful MMSE es-
timation. This choice aims at minimizing the energy spent by
each sensor for channel training. Furthermore, we assume con-
ditionally i.i.d. decisions, that is
with . Finally, we set for simplicity

and unless differently specified.
In the following figures, for comparison purposes, we report

the (upper) “observation bound” [9], i.e., the optimum perfor-
mances over a noise-free channel, given by:

(63)

(64)

where denotes a discrete-valued threshold.
Max-Log vs CVBased Linear Filters: In Fig. 3 we report

as a function of (in dB) while fixing (dB) for MF,
ZF and MMSE based either on Max-Log (solid) or CV (dashed)
fusion rules (cf. (19) and (21), respectively), assuming14

. This is done in order to assess the performance gain given
by the availability of the complex-valued output . We consider
a WSN with sensors and we show both scenarios with

(i.e., an array of moderate size) and (a large
array). First, it is apparent that when Max-Log based
rules achieve a slight performance improvement w.r.t. corre-
sponding CV-based rules. The mentioned improvement is not
always appreciated in the case , since at low SNR the
quantization loss of for CV-based rules becomes less severe
than imperfect match of Max-Log approximation. Therefore,

14Aiming at a fair comparison, we use randomization whenever the discrete
nature of CV-based rules does not allow to meet the desired exactly.
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Fig. 4. vs. for all the presented rules; WSN with sensors, (dB). (a) (moderate size array). (b) (large
size array).

the availability of soft-ouput values of the linear filters is bene-
ficial only in the large-array case. For the mentioned reasons we
only keep rules based on Max-Log in what follows.
Receiver Operating Characteristic (ROC): In Figs. 4(a) and

(b) we show as a function of for two different sce-
narios: (i) a scenario with a receive array of moderate size (
, Fig. 4(a)) and (ii) a scenario with a large array ( ,

Fig. 4(b)). It is apparent that when the MRC remains
an appealing solution, due to substantially low system knowl-
edge requirement, while in the large array regime
its performance suffers from a significant loss w.r.t. the LLR
and it is outperformed by mMRC. Differently, all the fusion
rules based on MIMO linear filters exploit effectively the dra-
matic increase of diversity and received SNR, and at
they approach the performance of optimum fusion rule. This
is more pronounced in the case of linear-filters plus Max-Log,
since they are asymptotically optimal15. The WL solutions per-
form quite well, but have a moderate loss in performance; this
is due to the reduced required system knowledge (i.e., a mere
second order characterization of ). Finally, it is apparent
that performs slightly better than . Unfortunately
this is achieved at an increased difficulty in the acquisition of
required parameters (indeed is usually harder to obtain,
due to the less predictable statistical characterization of the un-
known event observed).

vs. : Analogous considerations can be drawn from
Fig. 5, where as a function of is shown, assuming

. We plot the scenario for a WSN with sensors and
(dB). From inspection of the figure, we see

that ZF Max-Log and MMSE Max-Log approach the LLR as
grows, thus confirming the theoretical findings. Differently,

convergence of MF Max-Log to the optimum performance is
much slower and cannot be appreciated from the figure. Fur-
thermore, MRC performs poorly when is much higher than
the number of sensors as opposed to mMRC, the latter being
capable of effectively exploiting the linear SNR increase.

15Here the term “asymptotically optimal” refers to optimality as the number
of antennas grows large.

Fig. 5. vs. for all the considered rules, ; WSN with
sensors, (dB).

Fig. 6. vs. (dB) for all the considered rules, ; WSN with
sensors, (markers only) vs. (markers plus solid

lines) antennas and (dB).

vs. : In Fig. 6 we show as a function of ,
assuming , in order to assess the performance im-
provement w.r.t. the average SNR. We consider a WSN with
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Fig. 7. reduction (dB) vs. when moving from a DFC with
to antennas; sensors, (dB), . MRC is
excluded since it does not meet prescribed target .

Fig. 8. vs. for Max-Log (top) and CV based (bottom) linear
fusion rules; simulated (dashed) vs. theoretical (solid, saddlepoint approx.)
ROC in scenario . WSN with sensors,

antennas at the DFC and (dB)
(single instance of considered).

sensors, antennas at the DFC and
(dB). It is apparent that ZF Max-Log and MMSE

Max-Log approach the optimum at (dB) when
(resp. (dB) when ). MF Max-Log has a mod-
erate loss in performance w.r.t. the optimum, even at high SNR,
due to the non-ideal separation of sensors contributions (this is a
consequence of non-nulled residual interference, which causes
performance loss when the so-called “open-eye” condition [46]
is not verified) and it is outperformed byWL rules. As supported
theoretically by [20], MRC performs poorly at high SNR and it
is appealing only at very-low SNR, as opposed to mMRC. Fur-
thermore, all the proposed rules benefit from an increase of the
number of receive antennas at the DFC.
Also, in order to first investigate energy efficiency of the

WSN for finite values of , the corresponding sensor energy
saving, when the array size is increased and the target perfor-
mance (in terms of ) is kept fixed, is analyzed. To
this end, Fig. 7 shows the reduction of (quantified as the
difference in dB) achieved when moving from to

Fig. 9. vs. for WL, 1 (top) and WL, 0 (bottom) fusion rules; sim-
ulated (dashed) vs. theoretical (solid) ROC in scenario .
WSN with sensors, antennas at the DFC and

(dB) (single instance of considered).

Fig. 10. vs. for MRC (top) and mMRC (bottom) fusion rules; sim-
ulated (dashed) vs. theoretical (solid) ROC in scenario .
WSN with sensors, antennas at the DFC and

(dB) (single instance of considered).

antennas, by ensuring the same prescribed system
false-alarm rate (set to ) and system detection prob-
ability ( in the plot). It is apparent that for all
the sub-optimal rules the energy reduction is remarkable. As an
example, transmitted SNR of MF Max-Log can be reduced by

dB when the target system performance is
). Also, mMRC and MF Max-Log present an in-

creasing reduction with since their performance at
is much worse than the case in comparison with

other rules, as also apparent in Fig. 6.
Large Theoretical Performance for Max-Log/CV Linear,

WL and (m)MRC Rules: In Figs. 8, 9 and 10 we show vs.
of in order to assess the theoretical convergence of Max-
Log/CV based MF/ZF/MMSE, WL and (m)MRC rules, respec-
tively, obtained in Section IV. Here we consider performance
convergence for the asymptotic scenario (i.e., ,
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Fig. 11. vs. for ZF Max-Log, MMSE Max-Log and WL rules, ; exact (solid) vs approximate (dashed) matrix inversion; WSN with
sensors, (dB), (dB).

where and ), namely we assume an energy
cut in both training and reporting phases. Both scenarios are
clearly considered aiming at establishing energy efficiency of
the WSN when grows unbounded [24]. We adopt a single re-
alization of (drawn from a log-normal with
(dB)), a WSN with sensors and ;
finally we set . It is apparent that MC-based ROCs
approach the corresponding theoretical ones as grows, thus
confirming the theoretical findings. Therefore, the mentioned
theoretical performance are achieved even though the sensors
are cutting their transmitted energy in a way proportional to

. This underlines the energy-efficiency of the considered
WSN with respect to all the fusion rules being considered. In-
deed, even though they are sub-optimal (and have polynomial
complexity, see Table I) they all enjoy this desirable property.
It is worth remarking that the theoretical results hold exactly as
goes to infinity, except for the Max-Log and CV based linear

rules, where the saddlepoint approximation is used to draw the
theoretical ROCs. Nonetheless there is a satisfactory match. Fi-
nally, we notice that the absolute large-array performance of
mMRC is worse than MRC, since we are actually considering a
very-low SNR scenario (i.e., the transmit energy for both phases
is being cut proportionally to ).
Efficient Approximate Inversion: In Fig. 11 we assess the per-

formance loss given by the approximate inversion described in
Section V for ZF Max-Log, MMSE Max-Log and WL rules.
We show vs. , assuming . We consider a
WSN with sensors, with (dB) and

(dB). It is apparent that each approximated rule ap-
proach the corresponding exact implementation as grows
large. However, we observe that in general the lower is
(which is the expected operating scenario in a WSN), the less is
the performance degradation with a moderate-sized array. Fur-
thermore, in the considered scenario (i.e., with conditionally in-
dependent decisions) the performance loss is less pronounced
for MMSE Max-Log and WL rules w.r.t. ZF Max-Log. This
is expected since in the former case the matrices

and need to be in-
verted, respectively, which are diagonally dominant (even for
moderate ) when is low (since both the right terms are di-
agonal and are dominating the sum at low SNR).

VII. CONCLUSION

In this paper we studied channel-aware decision fusion over
MIMO channels, in the presence of a large antenna-array at the
DFC. We presented a wide choice of low-complexity sub-op-
timal rules which efficiently exploit large-array benefits and are
able to achieve near-optimal performance. The proposed rules
were numerically compared with existing alternatives, namely
MRC, which was shown not to significantly exploit the increase
of the array size. Additionally, a theoretical analysis of the pro-
posed rules was provided under energy-reduction laws com-
monly considered in massive MIMO literature. Furthermore, a
detailed discussion on computational complexity of the men-
tioned rules was given. Accordingly, (further) computationally-
efficient versions of some of the proposed rules, via the approx-
imation of Neumann series of a matrix inverse, were derived.
Finally, the corresponding performance loss was assessed via
simulations and shown to be negligible when a large-array is
employed at DFC.

APPENDIX
PROOF OF LEMMA 1

We start by expanding as follows (cf. (13)):

(65)

Equation (65) is in the form ,
where . Thus represents a sufficient
statistic (independently on the relationship between and
) [47]. Furthermore, we notice that (resp. ) is

in one-to-one correspondence with , since (resp.

is invertible (this assumption is valid iff
for ZF). Finally, exploiting the property stating that

every one-to-one transformation of a sufficient statistic is itself
sufficient [47], we prove the lemma for ZF and MMSE.
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APPENDIX
FUSION ARCHITECTURES WITH MIMO LINEAR FILTERS

( available, conditionally independent decisions)—Here
we derive the fusion rules based on MIMO linear filters. We
first recall that, under a large array regime , we have

(cf. (16)). Also, by exploiting
is approxi-

mated as

(66)

The right hand side of (66) corresponds to a DFmodel operating
over PAC, whose properties have been studied in detail in [6],
[7]. Such a model has the advantage of being of feasible com-
plexity w.r.t. the model under investigation (i.e., a DF model
over MIMO), since its complexity is simply . Based on
(66), the LLR of is approximated as follows:

(67)

Although (67) has reduced computational complexity, it is well
known that is numerically unstable, due to the presence of ex-
ponentials with large dynamics. For this reason, we adopt the
near-optimum rule proposed in [7], based on Max-Log approx-
imation. The latter originates from turbo-codes literature [34]
and states that

(68)

where and . The approximation in (68) is
accurate when one of the terms in the sum
dominates over the remaining terms. Second line of (67) can be
put in the same form of (68) as

(69)

where we have defined:

(70)

Using (68) leads to the simplified expression for :

(71)

Similarly to [7], (71) can be put in compact form as
, with

(72)

where

and .
( available, conditionally independent decisions)—Here

we assume that we have available only the quantized
output . Similarly to the case of , as grows, we have

(cf. (18)). Therefore, we can
use the optimum rule over PAC in the case of binary symmetric
channels, namely the Chair-Varshney rule [6], whose statistic
is obtained as follows:

(73)

where we have defined
and . Finally, exploiting

the standard properties of logarithms provides (21).
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